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Introduction

A significant problem in computer engineering today is

the inability of application programmers to keep pace with

the rapid technological advances being made in computer

hardware. The field of image processing is an example of

this phenomenon, in which new hardware developments are slow

to be incorporated into existing software packages. A major

contributing factor to this problem is the application

software that has been written is poorly structured, heavily

laden with device dependencies, and unportable to new

.hardware.

Historically, image processing software packages have

been created in an ad hoc fashion, that is, as a need

developed, an application would be written to meet that

need. As the number of image processing programs grew,

similar applications were grouped together and called a

"system." While such practices are natural and commonplace,

they suffer the deficiency of leading to poorly structured

software packages that are difficult to modify and extremely

device/system-dependent. Even though this ad hoc approach

is very effective in terms of meeting deadlines and

satisfying immediate research needs, the resultant software

is often virtually unportable to new hardware. Upgrades to

new hardware normally require a complete rewrite of the

software, or at the very minimum, extensive, very costly and
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time-consuming revisions. This implies that users remain

bound to older outdated hardware for long periods of time,

even though newer, more powerful hardware may have already

been purchased and is operable in house.

A better alternative to this ad hoc approach to

software development would be to use a consistent and well-

structured, layered approach. In this method, the software

would be partitioned into layers, as shown in Fig. 1, where

each layer communicates to its nearest neighbors via a

predefined protocol. Software written in this manner would

remove many of the device dependencies found in current

image processing software packages, as each layer has no

knowledge of, nor has any need of knowing how things are

done beneath it. This layered software approach permits

programmers to continue to add applications to their system,

as the need for them arises, as long as they adhere rigidly

to the layered structure and the communications protocol

between layers.

Unfortunately, such practices have been the exception

rather than the rule. Furthermore, it would seem inevitable

that the requirements for each layer and the communication

protocol between layers would certainly differ from

organization to organization, and even from system to system

within the same organization. In addition, experience with

other devices outside of image processing, strongly

indicates that there should exist a set of primitive image

. .
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processing functions that all image processors should be

able to perform, and that the definition and use of this

standard significantly enhances software portability. It

would thus be logical to group this set of functions into a

"virtual image processor," where a virtual image processor

is merely an abstract representation of a device along with

the functions it performs and a language with which to

communicate.

Assuming that a standard virtual image processor (VIP)

could be implemented, application programs could then make

virtual calls to this device using the predefined VIP

language. A VIP would force application programmers to

write device-independent code, and would thus greatly

enhance the portability of image processing software

packages. Since the actual implementation of the VIP would

be completely transparent to the application programs, the

same application program could run on several different

image processors merely by switching the hardware on which

the VIP is implemented. Powerful image processors would

require very little software to implement the VIP, while

less powerful image processors would have to emulate many of

its functions, but a standard VIP interface would trivialize

* upgrades to more powerful hardware as the new hardware would

replace much of the software emulation. Finally, a VIP

would also facilitate the implementation of an image

0C
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processing network where several different image processors

and workstations could be configured as a network and used

in concert.

The need for virtual image processor development has

been recognized in the image processing user community and

by image processing equipment manufactures as well. The

National Aviation and Space Administration (NASA), one of

the pioneers in image processing software development and

heavily dependent on such software, and the Gould Inc., a

major distributor of image processing equipment, are two

such organizations that recognize the problems of device and

system-dependent software packages.

Gould has developed an Imaging Kernal System (IKS)

which introduces a formalized model of a Virtual Image

Processing System (VIPS) in addition to virtual image

processing objects that include images, overlays, control

transforms, windows, and programmable cursors [1]. Gould's

primary concern in developing IKS was to maximize the

portability of applications software (internally as well as

'externally) across the Gould image processing product line.

IKS was not designed to be specific to the Gould product

line, but it is currently proprietary software and has only

been implemented on Gould machines. Furthermore, only a

FORTRAN binding presently exists running under the VMS

operating system.

NASA also has spent many man years in an attempt at

0,~
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providing coherent, structured software to their community

of users by developing their own version of a virtual image

processor [2]. NASA's system called DMS (Display Management

Subsystem) along with its virtual operating system TAE

(Transportable Applications Executive) [3] address problems

related to device-dependent code as well as operating system

dependent code. TAE provides a system programming library

that performs disk and file management and other related

operating system dependent features, which allows

programmers to write operating system independent software.

Alternately, DMS provides a virtual image processor

interface which enables application programmers to write

device-independent code. TAE has been implemented on

various systems, and DMS on several different image

processors, but the problem with utilizing NASA's software

is that they assume as a basis, a large, powerful system

which is usually beyond the capabilities of typical low-cost

systems. Thus, as an alternative (albeit, less powerful

alternative), this paper will discuss a prototype virtual

image processor for low-cost image processors.

II I , I, I II I M11 0 . .I %



Image Processors

A digital image processor can be defined as a machine

that aids a computer in manipulating images. The word,

image, can refer to many things, but for this paper, it will

be restricted to a two-dimensional numerical representation

of an object. A minimum image processor must therefore

provide a means for moving images to and from a computer as

well as a storage medium for the images once they arrive. A

structure for a typical processor is shown in Fig. 2.

The host interface enables communication between the

host computer and the image processor. The image memory, or

memories, often called frame buffers, are used to store the

images once they are received from the host computer or the

I .
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labeling the stomach in an image of the human digestive

system without destroying the original image, or as a

storage area for overflow conditions that arise when

performing image arithmetic operations such as image

averaging. Finally, most image processors have special

purpose hardware that aids the host in manipulating the

images. One such operation is the zooming of an image,

where each element in a particular portion of the image is

replicated several times to enable a more in-depth

examination of the selected area. Other operations are

panning and scrolling, which permit examination of the

displayed image throughout its horizontal and vertical

extent, particularly when the image has been zoomed. In

addition, sometimes there is hardware cursor support, where

a cursor is an illuminated pattern on the display monitor

similar to a cursor on a typical computer terminal screen.

Finally, more powerful image processors may provide hardware

support for high-level image processing functions such as

computing the histogram of an image, where a histogram is a

one-dimensional table containing the number of pixels at

each digital light intensity, or gray level.

%Z - wf



Virtual Devices

Humans naturally view machines in an abstract manner

defined only by the functions they perform and the language

they require for communication, rather than in terms of

voltage levels, devices being on or off, registers being

clocked or cleared, and the like. It was necessary for the

early programmers to communicate with computers in a very

primitive "machine language" using jumpers, switches, and

buttons. This of course was done out of necessity as they

had no other means of communicating with the computers.

After the early programmers became more familiar with

computers, they were able to abstract the machine and

communicate with it in a language known today as machine

language, where instead of worrying about jumpers and

switches, the provrammer concerned himself with setting

"bits" in registers and moving "bytes/words" to and from

memory locations. Viewing the interaction with the machine

in this manner reflected much more closely what was actually

happening at the macro level than stating what the voltage

level at point A or point B should have been.

Machine languages were a step in the abstraction of the

machine away from its physical construction, but the

programmer was still forced to communicate in a cumbersome

language of ones and zeros. Thus, the next step was the

advent of assembly languages, which permitted the programmer

N .
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to communicate using mnemonic instructions that were much

more natural and easier to understand. The programmer was

still required to learn a different language for each

computer, but his model of the machine had grown from one of

a physical piece of hardware to one that could move "data"

from one point to another and even output "information" via

peripherals.

A major breakthrough came with the advent of higher-

level languages. While early high-level languages such as

FORTRAN and BASIC closely resembled assembly languages, they

were nevertheless the first attempt at abstracting the basic

capabilities of the machine. With high-level languages, the

emphasis had changed from how the machine did things to what

exactly the machine could do. As a result of this higher

level of abstraction, the programmer no longer needed to

worry about the physical hardware with which he was

communicating; rather, he could replace his model of the

machine with the capabilities afforded by the higher-level

language he chose to use.

With this new virtual model of the machine, the

programmer was able to write code for this "virtual

machine," (which is defined by the language chosen to

p interact with it), which could be directly portable across

* "real machines" provided the implementation of the language

was consistent across machines. Thus, each high-level

language, in a sense, defined its own virtual machine.

@4



10

Similiarly, other tools such as operating systems can also

be viewed as virtual machines, as they too have been written

to extract the basic capabilities of the machine and define

an interface to it. Thus, we see, as humans, that we

naturally abstract our view of physical devices to virtual

machine models, and hence a virtual model for an image

processor is merely an extension of this concept.

.
.p.



Virtual Image Processor Model

The logical first step in defining a virtual image

processor is, of course, determining the functions that all

image processors should be able to perform. At present,

there does not exist a set of standard image processing

functions that should be supported as is the case with

graphics commands (4]. However, certain minimum

capabilities can be specified, and as a starting point for

the development of a prototype virtual image processor, we

have attempted to determine these capabilities.

First and foremost, an image processor should support

initialization which prepares the device for further

interaction. This includes the initialization of device

registers, lookup tables, refresh memories (frame buffers),

overlay planes, and cursors. It should also enable the

manipulation of images to include writing to and reading

from a host computer as well as zooming, panning and

scrolling. It should provide cursor support that allows the

definition of different shapes and sizes, allows the cursor

to be illuminated or removed from the display (often

referred to as turning the cursor on and off), supports

various cursor colors, and permits movement of the cursor.

In addition, it should provide access to one or more

graphics overlay buffers that permit the turning on and off

of bit planes, the drawing of lines and circles, the zooming

e,
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of the overlay buffer, and the selection of portions of the

image for region of interest operations. Finally, it must

permit writing to and reading from lookup tables to allow

histogram equalization, point operations, and psuedo and

real color image display.

In light of the functional requirements as stated

above, the prototype virtual image processor has been

divided into five sections. They are initialization, image

manipulation, cursor support, graphics, and lookup table

manipulation.

A. Initialization

This package contains those routines required to

initialize the image processor. It consists primarily of

three routines: ipopen(, ipclose(, and ipinit(.

Ip open(, which is similar to the standard C open() library

call, merely establishes the connection between the physical

device and its software representation. Ip close() is

similar to C's close() command as it severs this connection.

Ipinit() puts the image processor in a known state,

initializes the looku tables to a linear mapping, and

clears the display and graphics overlay planes when

specified.

B. Image Manipulation

Image manipulation includes routines that perform

0
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operations on the displayed image as well as any additional

frame buffers in the image processor. It consists of

several routines: zoom(, clear(, getpixel(), set_pixel(),

vertline), horizline, get_block), put_block(,

addimage(), sub_image(), multimage(, div-image(, and

aveimage().

Zoom() allows vertical and horizontal zoom of the

displayed image. Further, it pans and scrolls the displayed

image when zoomed to utilize the entire display. Clear()

initializes the selected frame buffer to all zeros, while

get_pixel() and set_pixel() are simple routines that allow

random access to any pixel in the display buffer.

Vertline() and horizline() are used to write a one-

dimensional array of data into a frame buffer. They have

been included to take advantage of image processors that are

optimized for display in a particular direction.

Get-block() reads a rectangular window from the

selected frame buffer and returns it to the host.

Putblock() writes a rectangular window to the selected

frame buffer. These routines are sufficiently powerful to

take advantage of block move instructions that are available

on some low-cost image processors, yet simple enough that

emulation on less powerful image processors is rather

straightforward.

Add_image() performs pixel by pixel additions of two

I- P
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images. Subimage(), multimage(), and div image() are

similiar in that they also operate on a pixel by pixel

basis. Aveimage(, which averages two or more images, is

primarily used to improve the signal-to-noise ratio in

images.

C. Cursor Support

This package contains routines that set up the cursor

at a given location, move the cursor on the image processor,

and change the cursor size, shape and color. These routines

are initcursor(), oncursor(, off cursor(), move cursor(),

wherecursor(), change_curscolorU, change_curs_size(), and

change_curs_shape().

Init cursor() initializes the cursor to the default

location (the center of the display), and the default size,

shape, and color, which are specific to each image

processor. It then turns the cursor on. Oncursor()

illuminates the cursor for display, while offcursor()

removes the cursor from the display. Move cursor() moves

the displayed cursor to the location specified, while

wherecursor() returns the current location of the cursor.

Change_curscolor() changes the current color of the

displayed cursor. Change_curssize() increments the size of

the cursor, and change_cursshape() steps through the

various cursor shapes available on the image processor.

D. Graphics
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This contains functions that allow for the annotation

of images, to include text annotation, the drawing of lines

and circles, the turning on and off of bit planes, and the

selection of regions for ROI (region of interest)

operations. It consists of several routines: writetext(,

graph_vertline(, graph_horiz_line(), graph_putblock),

grapheraseblock(, ipvect(, ipcircle(,

on_display color(), off displaycolor(), and

erasedisplay_color().
A:.,

Writetext() writes a scaled string of text in the

specified color at the specified location.

Graph_vertline() and graphhorizline() are used to write a

one-dimensional array of a specified color into the graphics

overlay area.

Graph_put_block() writes a rectangular buffer of the

specified color, while graph_eraseblock() clears a

rectangular region in the graphics overlay buffer to all

zeros. They are useful for creating logos, updating

graphical plots, and defining one-of-a-kind fonts. For

example, one could specify his organization's logo as a

rectangular grid containing the appropriate color at the

appropriate location. Graph_putblock() could then be used

to write the logo into the graphics overlay.

Ip-vect() and ip_circle() draw vector lines and circles

respectively in the specified color. On_display_color()
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turns on a given color for display, while

offdisplay_color() turns off the display of the specified

color. These functions are useful for distinguishing

between different overlays, markers, regions of interest,

and others on the display. Erase_display_color() is used to

remove an entire color from the graphics overlay buffer.

This is useful in that it allows users to initialize the

graphics overlay buffers, correct mistakes, or even reuse

the same color if so desired.

E. Lookup Table Manipulation

This allows the application programs to initialize the

lookup tables or to modify them to reflect the effects of

histogram equalization, point operations, or to display

pseudo or full color images. There are only three routines

required: initLUT(, load LUT(, and readLUT().

InitLUT() initializes the lookup tables (LUTs) to a

linear mapping. LoadLUT() lets the host load a selected LUT

with arbitrary values, while readLUT() returns a buffer

containing the desired LUT to the host. These functions

permit psuedo and full color display, facilitate point

operations, and enable lookup tables with certain desirable

features to be saved for future use, as the application

program need only read the desired lookup table and then

write it to disk for permanent storage.



Physical Implementation

In order to test the generality and usefulness of the

virtual image processor (VIP), it has been implemented on

three separate hardware devices. The IBM PC/AT running the

Santa Cruz Operation (SCO) Operating System V XENIX was

chosen as the host computer for these three image

processors. The PC/AT was chosen primarily because of its

relatively low cost (as compared to more powerful

0 minicomputers) and its wide acceptance as a de facto

personal computer standard. Also, due to the AT's

popularity, it was possible to find three separate image

processors that could fit into its chassis, requiring no

more than two expansion slots.

XENIX, a dialect of the UNIX operating system forN

microcomputers, was chosen because UNIX is the first

-operating system to be widely available across computer

vendors from the microcomputer to the mainframe. The

selection of a portable operating system like UNIX was a

step in the creation of a truly virtual image processor, as

operating system dependencies could limit the portability of

the virtual image processor to the chosen operating system.

Ideally one would also like to have a "virtual operating

is system" to free the VIP from any bias towards one particular

operating system, similar to TAE developed by NASA [3), but

for the initial prototype VIP, XENIX was certainly an
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acceptable compromise.

A. Hardware Devices

The three image processors chosen were: an IBM Personal

Computer Professional Graphics Controller Card (sometimes

referred to as a PGC -- Professional Graphics Controller)

[5]; an Imaging Technologies Incorporated FG-100-AT image

processor [6]; and a custom two-board image processor built

at the University of Washington based on Texas Instruments'

34010 Graphical Signal Processor (GSP) called the UWGSP [7].

1. Professional Graphics Controller (PGC)

The PGC is the least powerful of the three image

processors. It contains a 640 x 480 x 8 bit frame buffer

and three 256 x 4 bit lookup tables (LUTs). Besides the

frame buffer and the LUTs, its remaining feature is an Intel

8088 microprocessor with 64 kbytes of ROM which controls

the PGC and supports many high-level graphics commands

including three-dimensional drawing, modeling transforms,

pattern filling, and viewport rotation.

Given these limited capabilities, it is apparent that

the PGC has many drawbacks. For starters, the frame buffer

and the LUTs are internal to the PGC and cannot be mapped

into the host's address space. Hence, all communication

between the host and the PGC is accomplished through three

256 x 8 bit FIFO buffers, one for receiving image data from

the PGC, one for writing image data to the PGC, and one for

@4
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receiving error and warning codes from the PGC. This FIFO

communication protocol along with the small size of these

FIFOs is a major bottleneck in the PGC as the transfer of a

typical 512 x 480 x 8 bit image to and from the PGC takes on

the order of 10 sec. Also, the crude resolution of the LUTs

often introduces contouring into black and white images. In

addition, since the PGC has only a single 8-bit frame buffer

4 with no provision for graphics overlay planes, all

annotation, including the cursor, must be emulated, which6

requires overwriting the image. Finally, because the PGC is

a board developed primarily for computer graphics'

applications it does not support in hardware such basic

functions as zoom, pan, or scroll.

2. Imaging Technology Incorporated FG-100-AT (ITI)

The ITI provides four 512 x 512 x 12 bit frame buffers

which give one the option of using all 12 bits for extended

resolution, or alternately, 8 bits for resolution, and 4

bits for graphic overlay information. These extra frame

buffers can also facilitate some image processing

operations, e.g., convolution and FFT computation, as they

can be used locally to compute intermediate results without

affecting the original image. Three 4096 x 8 bit LUTs are

available for psuedo color or even true color display. In

addition, all four frame buffers and the three LUTs can be

-p mapped into the host's memory address space enabling fast

4..> . . .' : . .,' ,. ''.. -.... i-'. -''2 ".'.'-. .)-' '.: , .?- .," "- ""-," " " ,
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transfer of data to and from the ITI.

The ITI also has 16 I/O channel-mapped registers that

provide hardware support for zoom, pan, and scroll, and

rapid clearing of frame buffers. The real-time digitization

circuitry on the ITI provides a means for rapid acquisition

of images. A feedback path from the frame buffers to a

fourth lookup table, as well as a regular path from the

digitizer, enables real-time addition, subtraction,

multiplication, or division operations to be performed on 6-

bit images as they are acquired using this 12-bit feedback

lookup table.

Despite these features, the ITI lacks one major

component, a processor, which could provide rapid text

annotation and the drawing of lines, circles, and other

geometric objects.

3. University of Washington Graphics System Processor

The UWGSP is the most powerful of the three image

processors. Its most salient feature is that it utilizes an

on-board TMS 34010 Graphics System Processor (GSP) and a

TMS 32020 Digital Signal Processor (DSP) with 320 kbytes of

program memory to support many image processing functions,

including two-dimensional drawing functions, alphanumeric

annotation in several character fonts, block read and

writes, and high-speed cursor support. It also contains

four 512 x 512 x 8 bit frame buffers, a 512 x 512 x 4 bit
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graphics overlay buffer, and three 4096 x 8 bit lookup

tables. Independent horizontal and vertical zoom is also

supported in hardware.

B. Implementation

The actual implementation of the VIP, as shown in Fig.

1, requires device drivers to enable communication with the

hardware, vendor software which builds on the device drivers

providing basic low-level capabilities, and finally the VIP

interface software. In general, vendors of image processing

boards usually supply the device drivers and the vendor

software with the image processing boards themselves,

reducing the task of VIP implementation down to the writing

of the VIP interface software. However, this was not the

case for these three image processors as the vendor-supplied

software was written to run under the MS-DOS operating

system, which is of no help in a XENIX environment. What

follows is a description of the software written to

implement several functions of the VIP on each of the image

processors demonstrating how the salient features of an

image processor can be used to make the implementation of

certain functions trivial, while lack of these features

often requires extensive software emulation.

One such function is the zoom operation, which

inherently requires the panning and scrolling of the image

6 -we
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to center the display on the point about which the zoom is

being performed. The ITI board supports zooming, panning,

and scrolling in hardware. Thus, zooming the displayed

image is performed by writing the appropriate values to the

ITI's zoom, pan, and scroll registers. Zoom, pan, and

scroll are supported in firmware on the UWGSP, that is, the

UWGSP provides hardware zoom, but only about the upper-left

corner of the display. To permit near real-time zooming of

images, there exists a subroutine in the UWGSP program

memory that moves the region to be zoomed into the upper-

left corner of the display buffer and then loads the x and y

zoom registers with the appropriate zoom factors. Since

this is done within the UWGSP, and hence transparent to the

host, the host needs only to send a command to the UWGSP

instructing it to zoom about a particular point. For the

PGC, it is possible to zoom an image, but it is very slow

and requires a large amount of memory. A copy of the image

being displayed on the PGC is kept in a separate frame

buffer on the host. This extra frame buffer is necessary,

because the display buffer inside the PGC cannot be accessed

directly by the host because of the FIFO communication

-protocol used by the PGC, and hence it is loaded whenever an

image is sent to the PGC for display. If this were not

done, the entire image would have to be read in from the PGC

in 256 byte blocks every time a zoom was to be performed and

would require around 20 sec to zoom an image. Currently, a

I
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zoom is performed by copying the selected region from the

extra frame buffer into a temporary frame buffer and

replicating each pixel by the desired x and y zoom factors.

This temporary frame buffer is then sent to the PGC which

can only accept 256 bytes at a time.

The implementation of the cursor package also serves to

highlight the differences among the image processors. The

implementation on the UWGSP was very straightforward, as it

* provides firmware cursor support. To implement each of the

functions in the cursor package, the host called the

appropriate routine within the UWGSP. Implementation of the

cursor package on the ITI board required a fair amount of

software, but not nearly as much as was required by the PGC.

For example, in the ITI, the most significant bit plane in

its 4-bit graphics overlay buffer was used to indicate the

presence or absence of the cursor. After the default
A.

pattern for the cursor was created, the cursor was

illuminated for display (turned on) by lighting the

appropriate locations in the cursor's bit plane

corresponding to the cursor pattern. The cursor was turned

off (removed from the display) by erasing these previously

- illuminated locations from the cursor's bit plane. The PGC,

on the other hand, does not have a graphics overlay buffer,

and hence the only way to provide cursor support was to

overwrite the image with the cursor pattern at the desired

..
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cursor location. To prevent permanent damage to the image,

the overwritten area had to be temporarily saved and then

written back into the image, when the cursor was turned off.

To move the cursor, the overwritten area was written back

into the image, a new region was read from the image

corresponding to the new cursor position, and then the

cursor pattern was written into the image. This is very

slow as the PGC does not support block reads or writes, and

transfer of a small number of pixels requires substantial

overhead.

Changing the cursor color was also very straightforward

with the ITI board, and awkward with the PGC. The 4096 x 8

bit lookup tables in the ITI were divided into sixteen 256 x

8 bit lookup tables. The 4-bit graphics overlay buffer was

used to select among these sixteen lookup tables. Changing

the cursor color was thus reduced to writing the new color

into the LUTs corresponding to the cursor bit plane. A
slightly different approach was used in the PGC. Since the

implementation of the cursor on the PGC required that it be

written into the image, changing the cursor color entailed

writing the desired color into the lookup table entry

corresponding to the pixel intensity assigned to the cursor.

Here is where the problem arose, as each pixel in the image

having its intensity equal to the value chosen for the

cursor would change color when the cursor color changed. To

guard against this possibility, a histogram of the displayed
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image is computed as the image is being displayed, to ensure

that the cursor is assigned a unique pixel intensity. For

those rare cases where the image contains pixels at all

possible gray levels, the PGC returns an error stating that

it can not support color graphics, and hence the cursor

color defaults to white.

These examples illustrate some of the wide range of

capabilities among low-cost image processors and the vastly

different methods to perform the same functions on different

devices. This performance variation among different image

4processors is precisely what leads to poorly written, very

device-dependent code, as the system programmers often

develop a mind-set based on their experiences with a

particular image processor. It is difficult for programmers

to imagine how their code would run on different image

processors with different capabilities and completely

different communication protocols.

One way to combat the problem of device-dependent

programming is to isolate the features that are specific to

the given image processor into one particular area of the

overall system, and then build device-independent software

on top of it. A definition of a virtual image processor

attempts to isolate these features, but it is still

necessary to build on this VIP to demonstrate its utility.

What follows is a description of several application

a,
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programs tI -:it have been built on top of this prototype

virtual image processor.



Application Software

The application software chosen to build on the VIP was

the Quick and Dirty Image Processing System (QDIPS) acquired

from the Computer Systems Laboratory at the University of

California at Santa Barbara. QDIPS was originally developed

to aid researchers in the analysis of satellite images of

mountainous regions, where their primary goal was to develop

a means of accurately predicting run-off from snow melt. As

*the researchers' work broadened into other areas, QDIPS grew

to encompass these applications as well. At present, the

use of QDIPS has expanded to many areas of research,

including satellite oceanography, digital terrain mapping,

marine resource management, and data compression.

There are several features of QDIPS that are of

particular interest to us. The most useful feature of

QDIPS, in terms of familiarizing new users with the system,

is its on-line help menu. with this on-line help menu,

users can query the system for information on all of the

commands, receive a list of commands based on a keyword, and

receive information on many of the low-level commands

available for use. Another desirable feature of QDIPS is

that it was written in the C program language running under

the Berkley UNIX 4.2 Operating System and an attempt was

made to facilitate the porting of the software to other

dialects of UNIX by isolating features unique to the
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particular dialect. QDIPS also provides many useful

utilities for use by application programmers. For example,

QDIPS has incorporated within it a debugging facility that

aids programmers in creating new applications or porting

existing applications. These debugging routines have been

implemented using the C macro preprocessor to enable their

inclusion or exclusion based on a compilation flag. QDIPS

also has extensive error handling capabilities, where

encountered errors generate an error message suggesting the

probable cause for the error along with the program name and

line number within the program where the error occurred.

The error handling capabities also provide warning messages

when appropriate and a trace of the path leading to the

error if requested. There are also functions that enable

the rapid parsing of command line arguments. In addition, a

crude form of protection has been incorporated into QDIPS

A that denies access to unauthorized users.

One additional feature of QDIPS is that it does not run

under a burdensome ehecutive which requires the selection of

menus with an interactive device such as a mouse or, -

trackball, rather each function can be called directly by

typing in the appropriate command from the keyboard. This

also facilitates the creation of new application programs,

as each application program can be a stand-alone process
4

totally separate from the other applications. In addition,

each function has its own help facility which gives a
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detailed explanation of the command and the parameters it

requires. This help facility is activated by typing the

command name followed by the single argument, help.

Three software libraries were built using the virtual

image processor as a foundation, in addition to the

libraries that already existed, which provide useful

utilities to the application programs. These three

libraries are a keyboard package that allows one to move

around the image and emulate buttons being pushed on

. interactive devices, a cursor and color graphics overlay

package that provides a simple interface to application

programs needing to access the cursor and graphics overlay

capabilities of the virtual image processor, and an

-. interactive plotting package which allows the image

processor to appear as a plotting device to the outside

S. world.

The keyboard package can work in conjunction with

interactive devices to enable rapid cursor movement

* throughout the image with, for example, a mouse, while still

permitting precise cursor movements using the keyboard.

This could be very useful in selecting a region of interest

on which an operation is to be performed, such as the

selection and measurement of the densitometric and

morphometric properties of cell nuclei. It also allows the

execution of an image processing operation such as zooming

0ea
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or annotating an image, changing the cursor color, or

* computing a histogram, with the single press of a button -n

an interactive device or a single key on the keyboard.

Currently, only the Microsoft parallel mouse has been

integrated into the keyboard package, but other interactive

devices can be easily added.

The cursor and color graphics overlay package provides

a high-level interface to routines needing to manipulate the

*cursor or examine the various graphics planes. To use the

cursor and color graphics overlay package, the application

program needs only to specify a sequence of colors that it

wishes to display when changing the cursor color and/or

- viewing the graphics planes. For example, by using the

cursor and color graphics overlay package in conjunction

with the keyboard package, the user can define the cursor

color sequence to be red, green, yellow, magenta, blue,

cyan, and white. He can then trace a nucleus in an image in

red, press a button, label the nucleus as such in green,

press a button, trace the next necleus in yellow, press a

-* button, label it in magenta, and so on. The user can then

view all of this annotation at once, one color at a time, or

select a set of colors to be displayed.

The interactive plotting package, when used in

conjunction with the keyboard package, allows the user to

rapidly annotate images with lines, circles, ellipses, etc.

This could be used in determining the circularity of an
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'. object by first encircling it and then performing

circularity measurements on it.

Several functions have been built on top of these

library packages to demonstrate some of the capabilities of

the system as a whole, in addition to showing how easily

application software can be ported from one image processor

to another, when a model of a virtual image processor has

been properly defined and utilized. These functions include

initializing the "real" image processor, displaying images

on the image processor, annotating images with user-defined

fonts, computing histograms of images, performing linear

contrast enhancement and histogram equalization on images,

loading predefined lookup tables into the image processor to

permit displays in both pseudo and full color, drawing gray

scales, adding or subtracting two images, and averaging two

or more images. In addition, the cursor and color graphics

package, the keyboard package, and the interactive plotting

package have been incorporated into each of these functions

to enable color annotation and permit rapid cursor movement

throughout the image.



Discussion

The system, at present, does not have sufficient

capabilities to serve as a legitimate image processing

workstation, primarily because the application software was

4. implemented to help shape the model of the virtual image

processor and to demonstrate the increase in software

portability that naturally follows the definition and use of

a virtual image processor, rather than to create a full-

blown system. As is, the combination of the virtual image

processor and the QDIPS application software can serve as a

useful educational tool for newcomers to the field of image

processing, as well as a test bed for the development of new

-. application software or a full-scale virtual image

processor.

Beginners in image processing should not have to

concern themselves with the low-level details required to

interface to different image processors. They should be

given a set of functions to use, and instructed on how to

interface to these routines. This enables them to focus on

*1 how these tools can be used to accomplish a given task

rather than how these tools are actually implemented. A

model of a virtual image processor is ideally suited for

this purpose, as the student can make simple calls to

general image processing functions as opposed to learning

one particular system with its own set of peculiarities.
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Furthermore, the utilities provided by QDIPS make it very

easy for students to implement and debug new application

software -- a must for students who are also most likely

experimenting with the C programming language for the first

time. In addition, since the virtual image processor

prototype was written for low-cost systems, educational

institutions do not need to spend an exorbitant sum of

money, typical of many image processing systems, to acquire

workstations for student use.

The system can also be used to develop new application

software, because the very nature of the virtual image

processor prevents application programmers from

incorporating device-dependencies into their software. In

addition, as new applications are added, it is inevitable

that the programmers will see a need to expand the

capabilities of the virtual image processor to meet their

needs. Adding to the virtual machine will then serve to

increase their knowledge of virtual software development,

which will in turn facilitate the development of additional

application programs.

There are many improvements that could be made to the

virtual image processor model. The first task would be to

remove the XENIX operating system dependencies. Although

UNIX and its dialects are among the most portable operating

systems, defining a virtual operating system and making

calls to it would provide many of the advantages that were
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gained by the creation and use of a virtual image processor.

Operating systems dependencies are not as severe as device

dependencies, but they are nevertheless a barrier to system

portability. Another improvement would require the

application software to query the device being used to

determine its capabilities and make decisions based on the

capabilities of the device.

The virtual image processor is currently implemented as

a set of library calls. Thus the entire virtual image

processor is linked into the application programs at

compilation time. This often results in very large

executable files. A better approach would be to have the

virtual image processor run as a separate process and have

the application software send metacode commands to the

virtual image processor which would then interpret the

commands and perform the desired operation. This could

substantially reduce the amount of memory required by

application programs, would not bind the application

software to one particular device until run time, and would

permit dynamic selection of devices as the application

program would need only to break communication with the

first device and start up communication with a second. Work

in this area is currently under investigation in our

laboratory (8].

Finally, the definition of a standard interface is

04
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~usually a very iterative process, as was the case with this

'p. . prototype virtual image processor, and the best way to

demonstrate its utility and generality is to continue to add

~capabilities and port additional application programs to it.

=-
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Conclusion

A prototype low-cost virtual image processor has been

built and implemented on three separate image processors.

Application software has been successfully ported to these

image processors using the model of the virtual image

processor. The application software has helped to shape the

definition of the virtual image processor, and demonstrate

the inherent increase in the portability of application

software written to a virtual image processor, as opposed to

software written for a particular device which is usually

plagued with device dependencies. The model can also be

used as an educational tool representing many features

currently present in low-cost image processors.
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